Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 24(14): 4158-4164, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38557108

RESUMEN

As a quasi-layered ferrimagnetic material, Mn3Si2Te6 nanoflakes exhibit magnetoresistance behavior that is fundamentally different from their bulk crystal counterparts. They offer three key properties crucial for spintronics. First, at least 106 times faster response compared to that exhibited by bulk crystals has been observed in current-controlled resistance and magnetoresistance. Second, ultralow current density is required for resistance modulation (∼5 A/cm2). Third, electrically gate-tunable magnetoresistance has been realized. Theoretical calculations reveal that the unique magnetoresistance behavior in the Mn3Si2Te6 nanoflakes arises from a magnetic field induced band gap shift across the Fermi level. The rapid current induced resistance variation is attributed to spin-orbit torque, an intrinsically ultrafast process (∼nanoseconds). This study suggests promising avenues for spintronic applications. In addition, it highlights Mn3Si2Te6 nanoflakes as a suitable platform for investigating the intriguing physics underlying chiral orbital moments, magnetic field induced band variation, and spin torque.

2.
Rev Sci Instrum ; 89(3): 033704, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29604738

RESUMEN

We have designed, implemented, and tested a novel inertial piezoelectric motor (IPM) that is the first IPM to have controllable total friction force, which means that it sticks with large total friction forces and slips with severely reduced total friction forces. This allows the IPM to work with greater robustness and produce a larger output force at a lower threshold voltage while also providing higher rigidity. This is a new IPM design that means that the total friction force can be dramatically reduced or even canceled where necessary by pushing the clamping points at the ends of a piezoelectric tube that contains the sliding shaft inside it in the opposite directions during piezoelectric deformation. Therefore, when the shaft is propelled forward by another exterior piezoelectric tube, the inner piezoelectric tube can deform to reduce the total friction force acting on the shaft instantly and cause more effective stepping movement of the shaft. While our new IPM requires the addition of another piezoelectric tube, which leads to an increase in volume of 120% when compared with traditional IPMs, the average step size has increased by more than 400% and the threshold voltage has decreased by more than 50 V. The improvement in performance is far more significant than the increase in volume. This enhanced performance will allow the proposed IPM to work under large load conditions where a simple and powerful piezoelectric motor is needed.

3.
Rev Sci Instrum ; 88(12): 126102, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29289184

RESUMEN

A homebuilt low-temperature scanning tunneling microscope (STM) featuring a detachable scanner based on a double slider design, along with a reliable transfer mechanism for tip and sample exchange, is present. The coarse motor is decoupled from the scanner, which prevents the motor instabilities including vibrations and drifts from entering the tip-sample loop and thus improves the performance of the STM. In addition, in situ exchange of tips and samples can be implemented easily and reliably using a winch-type transfer mechanism. Atomically resolved images on graphite are demonstrated to show the performance of the proposed STM.

4.
J Proteomics ; 79: 1-12, 2013 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-23201115

RESUMEN

An industrial mutant of Streptomyces avermitilis produced avermectin at a high level in industrial complex culture medium. However, almost no avermectin was detected in the cultures of tryptone soya broth (TSB). Its wild-type strain could not synthesize avermectin. To elucidate the regulatory mechanism about avermectin production, proteomic analysis of S. avermitilis was carried out. Results showed that during avermectin biosynthesis, fatty acid metabolism and TCA cycle were repressed. Partial enrichment of glycolytic pathway indicated the critical role of glucose catabolism during avermectin biosynthesis. Some enriched enzymes in amino acid metabolic pathways (glnA, leuC) confirmed the leucine as the possible precursor of avermectin. Highly expressed stress or stress-related proteins indicated a global regulation mechanism at the onset of avermectin production. And highly expressed morphology control proteins revealed an association between hyphal morphology and avermectin production. Further, this study proofed strengthened capability to utilize carbon and nitrogen source in the industrial strain. Some stress or stress-related proteins (eshA, clpC, dnaK and grpE) expressed at low level in the industrial strain cultivated in non-production medium (lower than that in the wild-type strain), but these highly expressed at the onset of avermectin production. More sensible response to environmental stress may be responsible for it.


Asunto(s)
Ivermectina/análogos & derivados , Proteómica/métodos , Streptomyces/genética , Medios de Cultivo/farmacología , Fermentación , Regulación Bacteriana de la Expresión Génica , Ivermectina/metabolismo , Proteoma/análisis , Streptomyces/enzimología , Streptomyces/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...